PICK1 is implicated in organelle motility in an Arp2/3 complex–independent manner
نویسندگان
چکیده
PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x-ray scattering suggests a structural model that places the receptor-binding site of the PDZ domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other on the concave side of the banana-shaped PICK1 dimer. In the model, the ACT of one subunit of the dimer interacts with the PDZ and BAR domains of the other subunit, possibly accounting for autoinhibition. Consistently, full-length PICK1 shows diffuse cytoplasmic localization, but it clusters on vesicle-like structures that colocalize with the trans-Golgi network marker TGN38 upon deletion of either the ACT or PDZ domain. This localization is driven by the BAR domain. Live-cell imaging further reveals that PICK1-associated vesicles undergo fast, nondirectional motility in an F-actin-dependent manner, but deleting the ACT dramatically reduces vesicle speed. Thus the ACT links PICK1-associated vesicles to a motility factor, likely myosin, but, contrary to previous reports, PICK1 neither binds nor inhibits Arp2/3 complex.
منابع مشابه
PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity
Activity-dependent remodelling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the precise molecular mechanisms that regulate this process are unclear. Activators of Arp2/3-mediated actin polymerisation are required for spine enlargement; however, during long-term depression (LTD), spines shrink via actin depolymerisation and Arp2/3 inhibitors in thi...
متن کاملPICK1 links AMPA receptor stimulation to Cdc42
Rho-family GTPases control numerous cell biological processes via effects on actin dynamics, such as cell migration, cell adhesion, morphogenesis and vesicle traffic. In neurons, they are involved in dendritic spine morphogenesis and other aspects of neuronal morphology via regulation of the actin cytoskeleton. The Rho-family member Cdc42 regulates dendritic spine morphology via its effector N-...
متن کاملArp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells.
A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 ...
متن کاملThe ARP2/3 complex: giving plant cells a leading edge.
The seven-subunit ARP2/3 complex is an efficient modulator of the actin cytoskeleton with well-recognized roles in amoeboid locomotion and subcellular motility of organelles and microbes. The recent identification of different subunit homologs suggests the existence of a functional ARP2/3 complex in higher plants. Mutations in some of the subunits have revealed a pivotal role for the complex in...
متن کاملThe antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following...
متن کامل